An MCP server for semantic code search & navigation that helps AI agents work efficiently without burning through costly tokens. Instead of reading entire files, agents can search conceptually and jump directly to the specific functions, classes, and code chunks they need.
- OpenAI API Key: Required for generating embeddings (local embedding support planned)
-
Git: Must be a git repository (respects
.gitignore
files) -
Add
.sourcerer/
to.gitignore
: This directory stores the embedded vector database
go install github.com/st3v3nmw/sourcerer-mcp/cmd/sourcerer@latest
brew tap st3v3nmw/tap
brew install st3v3nmw/tap/sourcerer
claude mcp add sourcerer -e OPENAI_API_KEY=your-openai-api-key -e SOURCERER_WORKSPACE_ROOT=$(pwd) -- sourcerer
{
"mcpServers": {
"sourcerer": {
"command": "sourcerer",
"env": {
"OPENAI_API_KEY": "your-openai-api-key",
"SOURCERER_WORKSPACE_ROOT": "/path/to/your/project"
}
}
}
}
Sourcerer 🧙 builds a semantic search index of your codebase:
- Uses Tree-sitter to parse source files into ASTs
- Extracts meaningful chunks (functions, classes, methods, types) with stable IDs
- Each chunk includes source code, location info, and contextual summaries
- Chunk IDs follow the format:
file.ext::Type::method
- Watches for file changes using
fsnotify
- Respects
.gitignore
files viagit check-ignore
- Automatically re-indexes changed files
- Stores metadata to track modification times
- Uses chromem-go for persistent vector storage in
.sourcerer/db/
- Generates embeddings via OpenAI's API for semantic similarity
- Enables conceptual search rather than just text matching
- Maintains chunks, their embeddings, and metadata
-
semantic_search
: Find relevant code using semantic search -
get_chunk_code
: Retrieve specific chunks by ID -
find_similar_chunks
: Find similar chunks -
index_workspace
: Manually trigger re-indexing -
get_index_status
: Check indexing progress
This approach allows AI agents to find relevant code without reading entire files, dramatically reducing token usage and cognitive load.
Language support requires writing Tree-sitter queries to identify functions, classes, interfaces, and other code structures for each language.
Supported: Go, JavaScript, Markdown, Python, TypeScript
Planned: C, C++, Java, Ruby, Rust, and others
All contributions welcome! See CONTRIBUTING.md.
$ ls @stephenmwangi.com
- gh:st3v3nmw/obsidian-spaced-repetition
- gh:st3v3nmw/lsfr